Charge stabilized crystalline colloidal arrays as templates for fabrication of non-close-packed inverted photonic crystals.
نویسندگان
چکیده
We developed a straightforward method to form non-close-packed highly ordered fcc direct and inverse opal silica photonic crystals. We utilize an electrostatically self assembled crystalline colloidal array (CCA) template formed by monodisperse, highly charged polystyrene particles. We then polymerize a hydrogel around the CCA (PCCA) and condense silica to form a highly ordered silica impregnated (siPCCA) photonic crystal. Heating at 450 degrees C removes the organic polymer leaving a silica inverse opal structure. By altering the colloidal particle concentration we independently control the particle spacing and the wall thickness of the inverse opal photonic crystals. This allows us to control the optical dielectric constant modulation in order to optimize the diffraction; the dielectric constant modulation is controlled independently of the photonic crystal periodicity. These fcc photonic crystals are better ordered than typical close-packed photonic crystals because their self assembly utilizes soft electrostatic repulsive potentials. We show that colloidal particle size and charge polydispersity has modest impact on ordering, in contrast to that for close-packed crystals.
منابع مشابه
Photonic crystals Fabrication of Tunable Spherical Colloidal Crystals Immobilized in Soft Hydrogels**
Spherical colloidal crystals are three-dimensional periodic arrays of monodisperse colloidal particles with a spherical geometry. The spatial periodicity of the refractive index of the colloidal crystalline arrays results in an optical stop band and, hence, they act as photonic crystals in the optical regime. In contrast to conventional film-type colloidal crystals where the crystals are aligne...
متن کاملMorphological and Structural Control of Organic Monolayer Colloidal Crystal Based on Plasma Etching and Its Application in Fabrication of Ordered Gold Nanostructured Arrays
The organic monolayer colloidal crystals, which are usually prepared by self-assembling, could be used as templates, due to their interstitial geometry, for the periodically arranged nanostructured arrays, which have important applications in many fields, such as photonic crystals, information storage, super-hydrophobicity, biological and chemical sensing. Obviously, the structures of the obtai...
متن کاملTemplating hydrogels
Templating processes for creating polymerized hydrogels are reviewed. The use of contact photonic crystals and of non-contact colloidal crystalline arrays as templates are described and applications to chemical sensing and device fabrication are illustrated. Emulsion templating is illustrated in the formation of microporous membranes, and templating on reverse emulsions and double emulsions is ...
متن کاملFabricating colloidal crystals and construction of ordered nanostructures
Colloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous coll...
متن کاملSynthesis of Highly Charged, Monodisperse Polystyrene Colloidal Particles for the Fabrication of Photonic Crystals.
We have developed a series of emulsion polymerization recipes for the synthesis of highly charged, monodisperse polystyrene colloids of diameters between 100-400 nm. These spherical colloidal particles were crosslinked with divinyl benzene and functionalized with 1-allyloxy-2-hydroxypropane sulfonate. These highly charged, monodisperse colloidal particles readily self-assemble into robust three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 344 2 شماره
صفحات -
تاریخ انتشار 2010